3 research outputs found

    Automatic de-identification of textual documents in the electronic health record: a review of recent research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United States, the Health Insurance Portability and Accountability Act (HIPAA) protects the confidentiality of patient data and requires the informed consent of the patient and approval of the Internal Review Board to use data for research purposes, but these requirements can be waived if data is de-identified. For clinical data to be considered de-identified, the HIPAA "Safe Harbor" technique requires 18 data elements (called PHI: Protected Health Information) to be removed. The de-identification of narrative text documents is often realized manually, and requires significant resources. Well aware of these issues, several authors have investigated automated de-identification of narrative text documents from the electronic health record, and a review of recent research in this domain is presented here.</p> <p>Methods</p> <p>This review focuses on recently published research (after 1995), and includes relevant publications from bibliographic queries in PubMed, conference proceedings, the ACM Digital Library, and interesting publications referenced in already included papers.</p> <p>Results</p> <p>The literature search returned more than 200 publications. The majority focused only on structured data de-identification instead of narrative text, on image de-identification, or described manual de-identification, and were therefore excluded. Finally, 18 publications describing automated text de-identification were selected for detailed analysis of the architecture and methods used, the types of PHI detected and removed, the external resources used, and the types of clinical documents targeted. All text de-identification systems aimed to identify and remove person names, and many included other types of PHI. Most systems used only one or two specific clinical document types, and were mostly based on two different groups of methodologies: pattern matching and machine learning. Many systems combined both approaches for different types of PHI, but the majority relied only on pattern matching, rules, and dictionaries.</p> <p>Conclusions</p> <p>In general, methods based on dictionaries performed better with PHI that is rarely mentioned in clinical text, but are more difficult to generalize. Methods based on machine learning tend to perform better, especially with PHI that is not mentioned in the dictionaries used. Finally, the issues of anonymization, sufficient performance, and "over-scrubbing" are discussed in this publication.</p

    Automation of a problem list using natural language processing

    Get PDF
    BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information
    corecore